

Fault Tolerance in akka

4010-441

Principles of Concurrent Software Systems

2

Akka proponents believe that Actors naturally
form hierarchies.

 Within the hierarchy there is a strong Supervision

relationship

• Parental supervision

• Only actors create actors

• Each actor is supervised by its parent

 Upon failure, subordinate actor will

• Suspend itself, and its subordinates

• Send message to supervisor indicating the failure

Material on akka from on-line documentation

http://doc.akka.io/docs/akka/snapshot/java/FaultTolerance.html

http://doc.akka.io/docs/akka/snapshot/java/FaultTolerance.html

3

“Let it Fail” (“Let it Crash”) Strategy

 Popularized by Erlang

 In contrast to try-catch exception handling

• Instead of trying all things possible to prevent an

error from happening, this approach embraces

failure

 Let actors fail and let supervisor actor handle failure

• Restart a failed actor

• Restart a portion of the system it supervises

• Pass failure to its supervisor

 Failure is isolated and prevented from affecting other

parts of the system

• Failure Zones

4

Failure Zones

 Scatter-Gather Search

 Master Node actor(s) is

supervisor of Topic Node

actors

 Design zones to allow

master node or topic

nodes to fail without

bringing down the entire

system

From “Scala in Depth”, Joshua Suereth

5

Scatter-Gather Failure Zones

 Failure Zones 1 & 2 supervisors are responsible for

starting the entire tree or one particular topic node

 Failure Zone 3 manages the search on the front end. It

restarts the underlying search trees or front end as

needed
From “Scala in Depth”, Joshua Suereth

6

A supervisor actor has a range of options for
handling the failure notice.

 Resume the subordinate and all its subordinates, keep

supervisor state

 Restart the subordinate and all its subordinates, clear

supervisor state

 Terminate the subordinate permanently

 Escalate the failure.

Each supervisor needs a function which translates all
failure causes into one of the above options.

7

Actor Restart Strategies

 Superviosr Actors have two different restart strategies:

• OneForOne: Restart only the component that has

crashed.

• AllForOne: Restart all the components that the

supervisor is managing, including the one that

have crashed.

8

An example supervisor strategy

private static SupervisorStrategy strategy =

 new OneForOneStrategy(10, Duration.create("1 minute"),

 new Function<Throwable, Directive>() {

 @Override

 public Directive apply(Throwable t) {

 if (t instanceof ArithmeticException) {

 return resume();

 } else if (t instanceof NullPointerException) {

 return restart();

 } else if (t instanceof IllegalArgumentException) {

 return stop();

 } else {

 return escalate();

 }

 }

});

@Override

public SupervisorStrategy supervisorStrategy() {

 return strategy;

}

Maximum number of restarts for actor

within the time range. No more than 10

restarts within 1 minute.

9

The causes of failures can be categorized three
ways.

 Systematic error for received message

 Transient failure of an external resource

 Corrupt internal state

If a supervisor believes that neither itself nor its other
children are affected, the child can simply be restarted.

Framework allows you to replace child and continue
processing pending messages.

This restart will be transparent to the rest of the system
except that failed message is not processed.

10

Restart has a prescribed sequence of operations
while leaving other parts of the system intact.

 Suspend the actor (which means that it will not process normal messages

until resumed), and recursively suspend all children

 Call the old instance’s preRestart hook (defaults to sending termination

requests to all children and calling postStop)

 Wait for all children which were requested to terminate (using context.stop())

during preRestart to actually terminate; this—like all actor operations—is

non-blocking, the termination notice from the last killed child will effect the

progression to the next step

 Create new actor instance by invoking the originally provided factory again

 Invoke postRestart on the new instance (which by default also calls preStart)

 Send restart request to all children which were not killed in step 3; restarted

children will follow the same process recursively, from step 2

 Resume the actor

11

To prevent the backup of cascading failures, use
a circuit breaker in the message path.

Failure counter exceeds maxFailures

without any successes

resetTimeout reached

First call succeeds

First call fails

Calls fail without even trying

12

Actors can monitor the lifecycle of other actors.

 This is usually called DeathWatch.

 Monitoring is reacting to termination; supervision is

reacting to failure.

 Monitoring actor will receive a Terminated message with

a default behavior to throw DeathPactException.

